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ABSTRACT

This paper explores the dynamics of allocation under increasing returns,

within a model where agents choose between technologies competing for adoption

and where each technology improves as it gains in adoption.  It shows that the

economy, over time, can become locked-in by "random" historical events to a

technological path that is not necessarily efficient, not possible to predict

from usual knowledge of supply and demand functions, and not easy to change by

standard tax or subsidy policies.  Rational expectations about future agents'

technology choices can exacerbate this lock-in tendency.

The paper contrasts this increasing returns case with the diminishing and

constant returns cases; provides a framework for a general family of

competing-technology problems; and discusses implications for economic

history, policy, and prediction.
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COMPETING TECHNOLOGIES, INCREASING RETURNS, AND LOCK-IN BY HISTORICAL EVENTS

W. Brian Arthur.

This paper explores the dynamics of allocation under increasing returns

in a context where increasing returns arise naturally: agents choosing between

technologies competing for adoption.

Modern, complex technologies often display increasing returns to adoption

in that the more they are adopted, the more experience is gained with them,

and the more they are improved. 1   When two or more increasing-return

technologies "compete" then, for a "market" of potential adopters,

insignificant events may by chance give one of them an initial advantage in

adoptions.  This technology may then improve more than the others, so it may

appeal to a wider proportion of potential adopters.  It may therefore become

further adopted and further improved.  Thus it may happen that a technology

that by chance gains an early lead in adoption may eventually "corner the

market" of potential adopters, with the other technologies becoming locked

out. Of course, under different "small events"--unexpected successes in the

performance of prototypes, whims of early developers, political circumstances

--a different technology might achieve sufficient adoption and improvement to

come to dominate. Competitions between technolologies may have multiple

potential outcomes.

It is well known that allocation problems with increasing returns tend to

exhibit multiple equilibria, and so it is not surprising that multiple

outcomes should appear here.  Static analysis can typically locate these

multiple equilibria, but usually it can not tell us which  one will be

"selected." A dynamic approach might be able to say more.  By allowing the

possibility of "random events" occurring during adoption, it might examine how

these influence "selection" of the outcome--how some sets of random

"historical events" might cumulate to drive the process towards one market-

share outcome, others to drive it towards another.  It might also reveal how

the two familiar increasing-returns properties of non-predictability and

potential inefficiency come about: how increasing returns act to magnify

chance events as adoptions take place, so that ex-ante  knowledge of adopters

1  Rosenberg (1982) calls this "Learning by Using" (see also Atkinson and
Stiglitz, 1969): Jet aircraft designs like the Boeing 727, for example, under–
go constant modification and they improve significantly in structural sound–
ness, wing design, payload capacity and engine efficiency as they accumulate
actual airline adoption and use.
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preferences and the technologies' possibilities may not suffice to predict the

"market outcome;" and how increasing returns might drive the adoption process

into developing a technology that has inferior long-run potential.  A dynamic

approach might also point up two new properties:  inflexibility in that  once

an outcome (a dominant technology) begins to emerge it becomes progressively

more "locked in"; and non-ergodicity in that historical "small events" are not

averaged away and "forgotten" by the dynamics--they may decide the outcome.

This paper contrasts the dynamics of technologies' "market shares" under

conditions of increasing, diminishing and constant returns.  It pays special

attention to how returns affect predictability, efficiency, flexibility, and

ergodicity; and to the circumstances under which the economy might become

locked–in by "historical events" to the monopoly of an inferior technology.

I.    A SIMPLE MODEL

Nuclear power can be generated by light-water, or gas-cooled, or heavy-

water, or sodium-cooled reactors.  Solar energy can be generated by crystal–

line–silicon or amorphous-silicon technologies.  I abstract from cases like

this and assume in an initial, simple model that two new technologies, A and

B, "compete" for adoption by a large number of economic agents.  The

technologies are not sponsored 2 or strategically manipulated by any firm; they

are open to all.  Agents are simple consumers of the technologies who act

directly or indirectly as developers of them.

Agent i  comes into the market at time t i ; at this time he chooses the

latest version of either technology A or technology B; and he uses this

version thereafter. 3  Agents are of two types,  R  and S, with equal numbers in

each, the two types independent of the times of choice but differing in their

preferences, perhaps because of the use to which they will put their choice.

The version of A or B each agent chooses is fixed or frozen in design at his

time of choice, so that his payoff is affected only by past adoptions of his

chosen technology.  (Later I examine the expectations case where payoffs are

also affected by future adoptions.)

2 Following terminology introduced in Arthur (1983), sponsored technologies
are proprietary and capable of being priced and strategically manipulated;
unsponsored technologies are generic and  not open to manipulation or pricing.
3  Where technologies are improving, it may pay adopters under certain
conditions to wait; so that no adoptions take place (Balcer and Lippman 1984;
Mamer and McCardle 1987).  We can avoid this problem by assuming adopters need
to replace an obsolete technology that breaks down at times {t i } .



3

Not all technologies enjoy increasing returns with adoption.  Sometimes

factor inputs are bid upward in price so that diminishing returns accompany

adoption.  Hydro–electric power, for example, becomes more costly as dam sites

become scarcer and less suitable.  And some technologies are unaffected by

adoption--their returns are constant.  I include these cases by assuming that

the returns to choosing A or B realised by any agent (the net present value of

Table 1. Returns to Choosing A or B given Previous Adoptions  
4

   Technology A Technology B

___________________________________________

R-Agent a
R  

+ rn
A

b
R

 + rn
B

S-Agent a
S 

 + sn
A

b
S 

+ sn
B

____________________________________________

the version of the technology available to him) depend upon the number of

previous adopters, nA and nB, at the time of his choice (as in Table 1)
 

with

increasing, diminishing, or constant returns to adoption given by r  and s

simultaneously positive, negative, or zero.  I also assume aR 
> bR and aS 

< bS

so that R-agents have a natural preference for A, and S-agents have a natural

preference for B.

To complete this model, I want to define carefully what I mean by

"chance" or "historical events."  Were we to have infinitely detailed prior

knowledge of events and circumstances that might affect technology choices--

political interests, the prior experience of developers, timing of contracts,

decisions at key meetings--the outcome or adoption market-share gained by each

technology would presumably be determinable in advance.  We can conclude that

our limited discerning power, or more precisely the limited discerning power

of an implicit observer , may cause indeterminacy of outcome.  I therefore

define "historical small events" to be those events or conditions that are

outside the ex-ante knowledge of the observer--beyond the resolving power of

his "model" or abstraction of the situation.

To return to our model, let us assume an observer who has full knowledge

of all the conditions and returns functions, except  the set of events that

4
 More realistically, where the technologies have uncertain monetary returns

we can assume von Neumann-Morgenstern agents, with Table 1 interpreted as the
resulting determinate expected-utility payoffs.
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determines the times of entry and choice { t i } of the agents.  The observer

thus "sees" the choice order as a binary sequence of R and S types with the

property that an R or an S comes n th in the adoption line with equal

likelihood, that is, with probability one half.

We now have a simple neoclassical allocation model where two types of

agents choose between A and B, each agent choosing his preferred alternative

when his time comes.  The supply cost (or returns) functions are known, as is

the demand (each agent demands one unit inelastically).  Only one small

element is left open, and that is the set of historical events that determine

the sequence in which the agents make their choice.  Of interest is the

adoption-share outcome in the different cases of constant, diminishing, and

increasing returns, and whether the fluctuations in the order of choices these

small events introduce make a difference to adoption shares.

We will need some properties.  I will say that the process is:

predictable if the small degree of uncertainty built in "averages away" so

that the observer has enough information to accurately pre-determine market

shares in the long-run;  flexible if a subsidy or tax adjustment to one of the

technologies' returns can always influence future market choices; ergodic (not

path-dependent) if different sequences of historical events lead to the same

market outcome with probability one.  In this allocation problem choices

define a "path" or sequence of A-  and B- technology versions that become

adopted or "developed," with early adopters possibly steering the process onto

a development path that is right for them, but one that may be regretted by

later adopters.  Accordingly, and in line with other sequential-choice

problems, I will adopt a "no-regret" criterion and say that the process is

path-efficient if at all times equal development (equal adoption) of the

technology that is behind in adoption would not have paid off better. 5 (These

informal definitions are made precise in the Appendix.)

Allocation in the Three Regimes

Before examining the outcome of choices in our R and S agent model, it is

instructive to look at how the dynamics would run in a trivial example with

increasing-returns where agents are of one type only (Table 2).  Here choice

order does not matter; agents are all the same; and unknown events can make no

5   An alternative efficiency criterion might be total or aggregate payoff
(after n choices).  But in this problem we have two agent types with different
preferences operating under the "greedy algorithm" of each agent taking the
best choice at hand for himself; it is easy to show that under any returns
regime maximization of total payoffs is never guaranteed.



5

difference so that ergodicity is not an issue. The first agent chooses the

more favorable technology, A say.  This enhances the returns to adopting A.

The next agent a-fortiori chooses A too.  This continues, with A chosen each

time, and B incapable of "getting started."  The end result is that A "corners

the market" and B is excluded.  This outcome is trivially predictable, and

path-efficient if returns rise at the same rate.  Notice though that if

returns increase at different rates, the adoption process may easily become

path-inefficient, as Table 2 shows. In this case after thirty choices in the

Table 2.  An Example:  Adoption Payoffs for Homogeneous Agents

Number of
Previous Adoptions 0 10 20 30 40 50 60 70 80 90 100

_____________________________________________________________________________

Technology A 10 11 12 13 14 15 16 17 18 19 20

Technology B  4  7 10 13 16 19 22 25 28 31 34

____________________________________________________________________________

adoption process, all of which are A, equivalent adoption of B would have

delivered higher returns.  But if the process has gone far enough, a given

subsidy-adjustment g to B can no longer close the gap between the returns to A

and the returns to B at the starting point.  Flexibility is not present here;

the market becomes increasingly "locked-in" to an inferior choice.

Now let us return to the case of interest, where the unknown choice-seq–

uence of two types of agents allows us to include some notion of historical

"small events."  Begin with the constant-returns case, and let nA( n) and nB( n)

be the number of choices of A  and B respectively, when n choices in total

have been made.  We can describe the process by xn, the market share of A at

stage n, when n choices in total have been made.  We will write the difference

in adoption, nA( n) -n B( n) as dn.  The market share of A  is then expressible as

(1)             x
n  

 =  0.5  +  d
n 

/2 n  .

Note that through the variables dn and n--the difference and total--we can

fully describe the dynamics of adoption of A versus B.  In this constant-

returns situation R-agents always choose A and S-agents always choose B,

regardless of the number of adopters of either technology.  Thus the way in

which adoption of A  and B  cumulates is determined simply by the sequence in
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which R-  and S-agents "line up" to make their choice, nA(n)  increasing by one

unit if the next agent in line is an R, with nB( n)  increasing by one unit if

the next agent in line is an S, and with the difference in adoption, dn,

moving upward by one unit or downward one unit accordingly.  To our observer,

the choice-order is random, with agent types equally likely.  Hence to him,

the state dn appears to perform a simple coin-toss gambler's random walk with

each "move" having equal probability 0.5.

In the increasing-returns case, these simple dynamics are modified.  New

   

Fig 1. Increasing Returns Adoption:  A Random Walk with Absorbing Barriers

R-agents, who have a natural preference for A, will switch allegiance if by

chance adoption pushes B far enough ahead of A in numbers and in payoff.  That

is, new R-agents will "switch" if

(2)            d
n

 = n
A
( n)  - n

B
( n)   <   ∆

R
 =  

( bR - a R)

r
       .

Similarly new S-agents will switch preference to A  if numbers adopting B

become sufficiently ahead of the numbers adopting A, that is, if

(3)             d
n 

=    n
A
( n)  - n

B
( n)   >   ∆

S
=  

( bS - a S)

s
       .

Regions of choice now appear in the dn, n plane (see Fig. 1), with bound–

aries between them given by (2) and (3).  Once one of the outer regions is

entered, both agent types choose the same technology, with the result that

this technology further increases its lead.  Thus in the dn,n  plane (2) and
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(3) describe barriers that "absorb" the process.  Once either is reached by

random movement of dn, the process ceases to involve both technologies--it is

"locked-in" to one technology only.  Under increasing returns then, the

adoption process becomes a random walk with absorbing barriers. I leave it to

the reader to show that the allocation process with diminishing returns

appears to our observer as a random walk with reflecting  barriers given by

expressions similar to (2) and (3).

Properties of the Three Regimes

 We can now use the elementary theory of random walks to derive the

properties of this choice process under the different linear returns regimes.

Table 3. Properties of the Three Regimes

Necessarily
Predictable Flexible Ergodic Path-Efficient

____________________________________________________________________________

Constant Returns Yes No Yes Yes

Diminishing Returns Yes Yes Yes Yes

Increasing Returns No No No No
____________________________________________________________________________

For convenient reference the results are summarized in Table 3.  To prove

these properties, we need first to examine long-term adoption shares.  Under

constant returns, the market is shared.  In this case the random walk ranges

free, but we know from random walk theory that the standard deviation of dn

increases
 

with √n.  It follows that the dn/ 2n term disappears and that x n

tends to 0.5 (with probability one), so that the market is split 50-50.  In

the diminishing returns case, again the adoption market is shared.  The

difference-in-adoption, dn, is trapped between finite constants; hence dn/ 2n

in equation (1) tends to zero as n goes to infinity, and xn must approach 0.5.

(Here the 50-50 market split results from the returns falling at the same

rate.)  In the increasing-returns-absorbing-barrier case, by contrast, the

adoption share of A must  eventually become zero or one.  This is because in an

absorbing random walk dn reaches the barriers with probability one.  Therefore

the two technologies cannot coexist indefinitely:  one must exclude the other.

Predictability is therefore guaranteed where the returns are constant, or

diminishing: in both cases a forecast that the market will settle to 50-50

will be correct, with probability one.  In the increasing returns case,
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however, for accuracy the observer must predict A's eventual share either as 0

or 100%.  But either choice will be wrong with probability one-half.

Predictability is lost.  Notice though that the observer can predict that one

technology will take the market; theoretically he can also predict that it

will be A with probability s ( aR-b R)/{ s ( aR-b R)  + r ( bS-a S)}; but he cannot

predict the actual market-share outcome with any accuracy--in spite of his

knowledge of supply and demand conditions.

Flexibility in the constant-returns case is at best partial.  Policy

adjustments to the returns can affect choices at all times, but only if they

are large enough to bridge the gap in preferences between technologies.  In

the two other regimes adjustments correspond to a shift of one or both of the

barriers.  In the diminishing-returns case, an adjustment g can always affect

future choices (in absolute numbers, if not in market shares), because

reflecting barriers continue to influence the process (with probability one)

at times in the future.  Therefore diminishing returns are flexible.  Under

increasing returns however, once the process is absorbed into A or B, the

subsidy or tax adjustment necessary to shift the barriers enough to influence

choices (a precise index of the degree to which the system is "locked-in")

increases without bound.  Flexibility does not hold.

Ergodicity can be shown easily in the constant and diminishing returns

cases.  With constant returns only extraordinary line-ups (for example, twice

as many R-agents as S-agents appearing indefinitely) with associated

probability zero can cause deviation from fifty-fifty.  With diminishing

returns, any sequence of historical events--any line-up of the agents--must

still cause the process to remain between the reflecting barriers and drive

the market to fifty-fifty.  Both cases forget their small-event history.  In

the increasing returns case the situation is quite different.  Some proportion

of agent sequences causes the market outcome to "tip" toward A, the remaining

proportion causes it to "tip" toward B.  (Extraordinary line-ups--say S

followed by R followed by S followed by R and so on indefinitely--that could

cause market sharing, have probability or measure zero.)  Thus, the small

events that determine { t i } decide the path of market shares; the process is

non–ergodic or path-dependent--it is determined by its small-event history.

Path-efficiency is easy to prove in the constant- and diminishing-returns

cases. Under constant-returns, previous adoptions do not affect pay–off.  Each

agent-type chooses its preferred technology and there is no gain foregone by

the failure of the lagging technology to receive further development (further

adoption).  Under diminishing returns, if an agent chooses the technology that
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is ahead, he must prefer it to the available version of the lagging one.  But

further adoption of the lagging technology by definition lowers its payoff.

Therefore there is no possibility of choices leading the adoption process down

an inferior development path. Under increasing returns, by contrast,

development of an inferior option can result.  Suppose the market locks in to

technology A.  R- agents do not lose; but S-agents would each gain ( bS - aS) if

their favored technology B had  been equally developed and available for

choice.  There is regret, at least for one agent type.  Inefficiency can be

exacerbated if the technologies improve at different rates.  An early run of

agent-types who prefer an initially attractive but slow–to-improve technology

can lock the market in to this inferior option; equal development of the

excluded technology in the long run would pay off better to both types.

Extensions, and the Rational Expectations Case

It is not difficult to extend this basic model in various directions.

The same qualitative results hold for M technologies in competition, and for

agent types in unequal proportions (here the random walk "drifts").  And if

the technologies arrive in the market at different times, once again the

dynamics go through as before, with the process now starting with initial nA

or nB not at zero.  Thus in practice an early-start technology may already be

locked in, so that a new potentially-superior arrival cannot gain a footing.

Where agent numbers are finite, and not expanding indefinitely, absorpt–

ion or reflection and the properties that depend on them still assert

themselves providing agent numbers are large relative to the numerical width

of the gap between switching barriers.

For technologies  sponsored  by firms, would the possibility of strategic

action alter the outcomes just described?  A complete answer is not yet known.

Hanson (1985) shows in a model based on the basic one above that again market

exclusion goes through: firms engage in penetration pricing, taking losses

early on in exchange for potential monopoly profits later, and all but one

firm exit with probability one.  Under strong discounting, however, firms may

be more interested in immediate sales than in shutting rivals out, and market

sharing can reappear. 6

Perhaps the most interesting extension is the expectations case where

agents' returns are affected by the choices of future agents.  This happens

for example with standards , where it is matters greatly whether later users

6For similar findings see the literature on the dynamics of commodity compet–
ition under increasing returns (eg. Spence, 1981; Fudenberg and Tirole, 1983).
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fall in with one's own choice.  Katz and Shapiro (1983, 1985) have shown, in a

two-period case with strategic interaction, that agents' expectations about

these future choices act to destabilize the market.  We can extend their

findings to our stochastic-dynamic model.  Assume agents form expectations in

the shape of beliefs about the type of stochastic process they find themselves

in.  When the actual  stochastic process that results from these beliefs is

identical with the bel ieved  stochastic process, we have a rational-

expectations fulfilled-equilibrium process.  In the Appendix, I show that

under increasing returns, rational expectations also yield an absorbing random

walk, but one where expectations of lock-in hasten lock-in, narrowing the

absorption barriers and worsening the fundamental market instability.

II.  A GENERAL FRAMEWORK

It would be useful to have an analytical framework that could

accommodate sequential-choice problems with more general assumptions and

returns mechanisms than the basic model above.  In particular it would be

useful to know under what circumstances a competing-technologies adoption

market must end up dominated by a single technology.

In designing a general framework it seems important to preserve two

properties (i) That choices between alternative technologies may be affected

by the numbers of each adopted at the time of choice; (ii) That small events

"outside the model" may influence adoptions, so that randomness must be

allowed for. Thus adoption market shares may determine not the next technology

chosen directly but rather the probability  of each technology's being chosen.

Consider then a dynamical system where one of K technologies is adopted

each time an adoption choice is made, with probabilities p1( x ), p2( x ),…,

pK( x ), respectively.  This vector of probabilities p is a function of the

vector x, the adoption-shares of technologies 1 to K, out of the total number

n of  adoptions  so far.  The initial vector of proportions is given as x0.  I

will call p( x)  the adoption  function .

We may now ask what happens to the long run proportions or adoption

shares in such a dynamical system.  Consider the two different adoption

functions in Fig. 2, where K = 2.  Now, where the probability of adoption of A

is higher than its market share, in the adoption process A tends to increase

in proportion; and where it is lower, A tends to decrease.  If the proportions

or adoption-shares settle down as total adoptions increase, we would

conjecture that they settle down at a fixed point of the adoption function.
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 Fig 2.  Two Illustrative Adoption Functions

  In 1983 Arthur, Ermoliev, and Kaniovski proved that under certain technical

conditions (see the Appendix) this conjecture is true.  A stochastic process

of this type converges with probability one to one of the fixed points of the

mapping from proportions (adoption shares) to the probability of adoption. Not

all fixed points are eligible. Only "attracting" or stable fixed points (ones

that  expected motions of the process lead toward) can emerge as the long run

outcomes. And where the adoption function varies with time n, but tends to a

limiting function p, the process converges to an attracting fixed point of p.

Thus in Fig. 2 the possible long-run shares are 0 and 1 for the function

p1 and x 2 for the function p2.)  Of course, where there are multiple fixed

points, which  one is chosen depends on the path taken by the process: it

depends on the cumulation of random events that occur as the process unfolds.

We now have a general framework that immediately yields two useful

theorems on path-dependence and single-technology dominance.

Theorem . An adoption process is non-ergodic and non-predictable if and

only if its adoption function p possesses multiple stable fixed points.

Theorem .  An adoption process converges with probability one to the

dominance of a single technology if and only if its adoption function p

possesses stable fixed points only where x is a unit vector.

These theorems follow as simple corollaries of the basic theorem above.

Thus where two technologies compete, the adoption process will be path-
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dependent (multiple fixed points must exist) as long there exists at least one

unstable "watershed" point in adoption shares, above which adoption of the

technology with this share becomes self-reinforcing in that it tends to

increase its share, below which it is self-negating in that it tends to lose

its share.  It is therefore not sufficient that a technology gain advantage

with adoption; the advantage must (at some market share) be self-reinforcing.

Non-Linear Increasing Returns with a Continuum of Adopter Types.

Consider, as an example, a more general version of the basic model

above, with a continuum of adopter types rather than just two, choosing

between K technologies, with possibly non-linear improvements in payoffs.

Assume that if nj  previous adopters have chosen technology j previously, the

next agent's payoff to adopting j is ∏j ( nj ) = aj  + r ( nj ) where aj  represents

the agent's "natural preference" for technology j  and the monotonically

increasing function r  represents the technological improvement that comes with

previous adoptions.  Each adopter has a vector of natural preferences a =

( a1, a2, …, aK) for the K alternatives, and we can think of the continuum of

agents as a distribution  of points a (with bounded support) on the positive

orthant.  We assume an adopter is drawn at random from this probability

distribution each time a choice occurs.  Dominance of a single technology j

corresponds to positive probability of the distribution of payoffs ∏ being

driven by adoptions to a point where ∏j  exceeds ∏i  for all i ≠ j.

The Arthur-Ermoliev-Kaniovski theorem above allows us to derive the

Theorem. If the improvement function r increases without upper bound as nj

increases, the adoption process converges to the dominance of a single

technology, with probability one.

Proof .  In this case, the adoption function varies with total adoptions n.

(We do not need to derive it explicitly however.)  It is not difficult to

establish that as n becomes large: (i) At any point in the neighbourhood of

any unit vector of adoption shares, unbounded increasing returns cause the

corresponding technology to dominate all choices; therefore the unit-vector

shares are stable fixed points. (ii) the equal-share point is also a fixed

point, but unstable. (iii) No other point is a fixed point.  Therefore, by the

general theorem, since the limiting adoption function has stable fixed points

only at unit vectors the process converges to one of these with probability

one.  Long-run dominance by a single technology is assured. ◊
Dominance by a single technology is no longer inevitable, however, if the

improvement function r  is bounded, as when learning effects become exhausted.
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This is because certain sequences of adopter types could bid improvements  for

two or more technologies upward more or less in concert.  These technologies

could then reach the upper bound of r together, so that none of these would

dominate and the market would remain shared from then on.  Under other adopter

sequences, by contrast, one of the technologies may reach the upper bound

sufficiently fast to shut the others out.  Thus, in the bounded case, some

event histories dynamically lead to a shared market; other event histories

lead to dominance.  Increasing returns, if they are bounded, are in general

not sufficient to guarantee eventual monopoly by a single technology.

III.  REMARKS

1. To what degree might the actual economy be locked-in to inferior

technology paths?  As yet we do not know. Certainly it is easy to find cases

where an early-established technology becomes dominant, so that later, super–

ior alternatives cannot gain a footing. 7  Two important studies of historical

events leading to lock-ins have now been carried out: on the QWERTY typewriter

keyboard (David, 1985); and on alternating current (David and Bun, 1987). (In

both cases increasing returns arise mainly from coordination externalities.)

Promising empirical cases that may reflect lock-in through learning are

the nuclear-reactor technology competition of the 1950s and 1960s and the U.S.

steam-versus-petrol car competition in the 1890s.  The US nuclear industry is

practically 100% dominated by light-water reactors.  These reactors were orig–

inally adapted from a highly compact unit designed to propel the first nuclear

submarine, the U.S.S. Nautilus , launched in 1954.  A series of circumstances--

among them the Navy's role in early construction contracts, political exped–

iency, the Euratom program, and the behavior of key personages--acted to favor

light water. Learning and construction experience gained early on appear to

have locked the industry in to dominance of light water and shut other reactor

types out (Bupp and Darian, 1978; Cowan, 1987).  Yet much of the engineering

literature contends that, given equal development, the gas-cooled reactor

would have been superior (see Agnew, 1981).  In the petrol-versus-steam car

case, two different developer types with predilections toward steam or petrol

depending on their previous mechanical experience, entered the industry at

7 Examples might be the narrow gauge of British railways (Kindleberger, 1983);
the US color television system; the 1950s programming language FORTRAN, and of
course the QWERTY keyboard (Arthur, 1984; David, 1985; Hartwick, 1985).  In
these particular cases the source of increasing returns is network extern–
alities however rather than learning effects.  Breaking out of locked-in tech–
nological standards has been investigated by Farrell and Saloner (1985,1986).
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varying times and built upon on the best available versions of each tech–

nology.  Initially petrol was held to be the less promising option: it was

explosive, noisy, hard to obtain in the right grade, and it required compli–

cated new parts. 8  But in the U.S. a series of trivial circumstances (Mc–

Laughlin, 1954; Arthur, 1984) pushed several key developers into petrol just

before the turn of the century and by 1920 had acted to shut steam out.

Whether steam might have been superior given equal development is still in

dispute among engineers (see Burton, 1976; Strack, 1970).

2. The argument of this paper suggests that the interpretation of

economic history should be different in different returns regimes. Under

constant and diminishing returns, the evolution of the market reflects only a-

priori endowments, preferences, and transformation possibilities; small events

cannot sway the outcome. But while this is comforting, it reduces history to

the status of mere carrier--the deliverer of the inevitable.  Under increasing

returns, by contrast many outcomes are possible. Insignificant circumstances

become magnified by positive feedbacks to "tip" the system into the actual

outcome "selected".  The small events of history become important.
9
  Where we

observe the predominance of one technology or one economic outcome over its

competitors we should thus be cautious of any exercise that seeks the means by

which the winner's innate "superiority" came to be translated into adoption.

3.  The usual policy of letting the superior technology reveal itself in

the outcome that dominates is appropriate in the constant and diminishing-

returns cases.  But in the increasing returns case, laissez-faire gives no

guarantee that the "superior" technology (in the long-run sense) will be the

one that survives. Effective policy in the (unsponsored) increasing-returns

case would be predicated on the nature of the market breakdown: in our model

early adopters impose externalities on later ones by rationally choosing

technologies to suit only themselves; missing is an inter-agent market to

induce them to explore promising but costly infant technologies that might pay

off handsomely to later adopters.
10

 The standard remedy of assigning to early

8 Amusingly, Fletcher (1904) writes:  "…unless the objectionable features of
the petrol carriage can be removed, it is bound to be driven from the road by
its less objectionable rival, the steam-driven vehicle of the day."
9

 For earlier recognition of the significance of both non-convexity and path-
dependence for economic history see David (1975).
10

Competition between sponsored  technologies suffers less from this missing
market.  Sponsoring firms can more easily appropriate later payoffs, so they
have an incentive to develop initially costly, but promising technologies.
And financial markets for sponsoring investors together with insurance markets
for adopters who may make the "wrong" choice, mitigate losses for the risk-
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developers (patent) rights of compensation by later users would be effective

here only to the degree that early developers can appropriate later payoffs.

As an alternative, a central authority could underwrite adoption and explor–

ation along promising but less popular technological paths. But where eventual

returns to a technology are hard to ascertain--as in the U.S. Strategic De–

fense Initiative case for example--the authority then faces a classic multi-

arm bandit problem of choosing which technologies to bet on.  An early run of

"jackpots" from an inferior technology may cause it perfectly rationally to

abandon other possibilities.  The fundamental problem of possibly locking-in a

regrettable course of development remains (Cowan, 1987).

IV.  CONCLUSION

This paper has attempted to go beyond the usual static analysis of

increasing-returns problems by examining the dynamical process that "selects"

an equilibrium from multiple candidates, by the interaction of economic forces

and random "historical events."  It shows how, dynamically, increasing returns

can cause the economy gradually to lock itself in to an outcome not

necessarily superior to alternatives, not easily altered, and not entirely

predictable in advance.

Under increasing returns, competition between economic objects--in this

case technologies--takes on an evolutionary character, with a "founder effect"

mechanism akin to that in genetics. 11  "History" becomes important.  To the

degree that the technological development of the economy depends upon small

events beneath the resolution of an observer's model, it may become impossible

to predict market shares with any degree of certainty.  This suggests that

there may be theoretical limits, as well as practical ones, to the predict–

ability of the economic future.

averse.  Of course, if a product succeeds and locks-in the market, monopoly-
pricing problems may arise. For further remarks on policy see David (1987).
11For other selection mechanisms affecting technologies see Dosi (1987), Dosi,
Freeman, Nelson, Silverberg, and Soete (1987), and Metcalfe (1985).
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APPENDIX

A.  Definitions of the Properties

Here I define precisely the properties used above.  Denote the market
share of A after n choices as xn. The allocation process is:

(a)  predictable if the observer can ex-ante  construct a forecasting sequence
{ x*

n} with the property that | xn-x *
n| → 0,  with probability one, as n →∞;

(b) flexible if a given marginal adjustment g to the technologies' returns can

alter future choices;

(c) ergodic  if, given two samples from the observer's set of possible
historical events, { t i } and { t' i },  with corresponding time-paths { xn} and

{ x ' n}, then | x' n-x n| → 0, with probability one, as n → ∞;

(d)  path-efficient  if, whenever an agent chooses the more-adopted technology

α, versions of the lagging technology β would not have delivered more had

they been developed and available for adoption.  That is, path-efficiency
holds if returns Π  remain such that Πα ( m) ≥ Max j { Πb( j )} for k ≤j ≤m,

where there have been m previous choices of the leading technology  and k of

the lagging one.

B.  The Expectations Case

Consider here the competing standards case where adopters are affected by

future  choices as well as past choices.  Assume in our earlier model that R-
agents receive additional net benefits of ΠA

R,  ΠB
R, if the process locks-in

to A or to B respectively; similarly S-agents receive ΠA
S, ΠB

S. (Technologies

improve with adoption as before.)  Assume that agents know the state of the
market ( nA, nB) when choosing and that they have expectations or beliefs that

adoptions follow a stochastic process Ω.  They choose rationally under these

expectations, so that actual adoptions follow the process Γ( Ω).  This actual

process is a rational expectations equilibrium  process  when it bears out the

expected process, that is, when Γ( Ω) ≡  Ω.

We can distinguish two cases, corresponding to the degree of heter–

ogeneity of preferences in the market.

Case i.   Suppose initially that aR - b R > Π
B

R
 and bS - aS > Π

A
S  and that

R  and S-types have beliefs that the adoption process is a random walk Ω with

absorption barriers at ∆'
R, ∆'

S, with associated probabilities of lock-in to

A, P( nA,n B ) and lock-in to B, 1- P( nA, nB).  Under these beliefs, R-type

expected payoffs for choosing A or B  are, respectively: 

(4) aR  + rn A   +  P ( nA, nB) ΠA
R
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(5) bR  + rn B   + (1- P( nA, nB)) Π
B

R .

S-type payoffs may be written similarly.  In the actual process R-types

will switch to B when nA and nB  are such that these two expressions become

equal.  Both types choose B from then on.  The actual probability of lock-in

to A is zero here; so that if the expected process is fulfilled, P is also

zero here and we have nA and  n B  such that

 aR  + rn A   =   b R  + rn B   + Π
B

R

with associated barrier given by
(6)        ∆R    = n A - nB  =  - ( aR-b R - Π

B
R)/ r  .

Similarly S-types switch to A at boundary position given by

(7)         ∆S   =  nA - n B  = ( bS - aS - ΠA
S )/ s

It is easy to confirm that beyond these barriers the actual process is

indeed locked in to A or to B and that within them R-agents prefer A, and S-

agents prefer B.  Thus if agents believe the adoption process is a random walk

with absorbing barriers ∆'
R, ∆'

S given by (6) and (7), these beliefs will be

fulfilled, and this random walk will be a rational expectations equilibrium.

Case ii.   Suppose now that aR - b R < ΠB
R and bS - aS < ΠA

S.  Then (4)

and (5) show that switching will occur immediately if agents hold expectations

that the system will definitely lock-in to A or to B.  These expectations

become self-fulfilling and the absorbing barriers narrow to zero.  Similarly,

when non-improving standards compete, so that the only payoffs are ΠA  and

ΠB, again beliefs that A or B will definitely lock-in become self-fulfilling.

Taking both cases together, expectations either narrow or collapse the

switching boundaries.  They exacerbate the fundamental market instability.

C.  The Path-Dependent Strong-Law Theorem

Consider a dependent-increment stochastic process where, at each event-

time, one unit is added to categories 1 through K, with probabilities p =

( p1( x ), p2( x ),…, pK( x )), respectively, where x  is the vector of current

proportions in each category.  (The Borel function p maps the unit simplex of

proportions SK into the unit simplex of probabilities SK.)  Starting with an

initial vector of units, b0, in the K categories, the process is iterated to

yield the vectors of proportions X1, X2, X3, ...  .

Theorem. Arthur, Ermoliev, and Kaniovski (1983,1984)
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(i)  Suppose p: SK → SK is continuous, and suppose the function p( x) - x

possesses a Lyapunov function (that is, a positive, twice-differentiable

function V with inner product ((p( x)- x), Vx) negative).  Suppose also that the

set of fixed points of p, B = { x : p( x) = x } has a finite number of connected

components.  Then the vector of proportions { Xn} converges, with probability

one, to a point z  in the set of fixed points B,  or to the border of a

connected component.

(ii)  Suppose p maps the interior of the unit simplex into itself, and

that z  is a stable point (as defined in the conventional way). Then the

process has limit point z with positive probability.

(iii) Suppose z  is a non-vertex unstable point of p.  Then the process

can not converge to z with positive probability.

(iv) Suppose probabilities of addition vary with time n, and the sequence

{ pn}  converges to a limiting function p faster than 1/ n converges to zero.

Then the above statements hold for the limiting function p.  That is, if the

above conditions are fulfilled, the process converges with probability one to

one of the stable fixed points of the limiting function p.

The theorem is extended to non-continuous functions p and to non-unit and

random increments in Arthur, Ermoliev and Kaniovski, 1987b. For the case K =2,

with p stationary see the elegant analysis of Hill, Lane, and Sudderth, 1980.






